The goal of Model-Aligned Coupling (MAC) is to construct couplings that are better aligned with the model's current ability to fit the data. Specifically, we aim to prioritize couplings \( (x_0, x_1) \) that have lower prediction error under the current vector field \( v_\theta \). To measure whether the model can fit the data well, we employ the pairwise prediction error, defined as:
\[ \mathcal{L}_{\mathrm{pair}}(x_0, x_1) := \mathbb{E}_{t \sim \mathcal{U}[0,1]} \left[ \left\| v_\theta((1 - t)x_0 + t x_1, t) - (x_1 - x_0) \right\|^2 \right] \]
Our objective is to find a coupling \( \tilde{\rho}(x_0, x_1) \in \mathcal{C}(p_0, p_1) \) that minimizes the expected prediction error:
\[ \tilde{\rho} = \arg\min_{\rho \in \mathcal{C}(p_0, p_1)} \, \mathbb{E}_{(x_0, x_1) \sim \rho} \left[ \mathcal{L}_{\mathrm{pair}}(x_0, x_1) \right] \]
where \( \mathcal{C}(p_0, p_1) \) denotes the set of admissible couplings with fixed marginals.